Salomon S Lab NSO Socks – excellent socks for every trail runner from technical trail aficionados to long distance grinders

Salomon socks have been something of an enigma in the US. Although broadly available in Europe, the sock lines have had very limited distribution in the US. This seems to be the result of the fact that Salomon don’t actually own the rights to distribution of their socks- this was sold to Intersock Group (ITA) in 2002 . For a while Interlock Group had a US affiliate in Portland, OR that offered a very limited selection of Salomon socks through a rudimentary online shop and to some retail outlets. This selection included only a few of the running socks. Having been introduced to the full line of excellent Salomon socks whilst in Europe many years ago, I sought out a source here in the US- sometimes the Intersock Group affiliate would have the socks available online but often there was limited stock or certain models were not brought in to the US. So in past years, when in Europe I would pick up a few  pair of socks. It was a non-ideal situation, particularly when the socks started wearing out.

But there seems to be movement on availability of Salomon socks in the US. A new Intersock Group affiliate (Sport Dispatch) has picked up the line and they are bringing in an expanded line of Salomon socks to the US market, including running, alpine, and nordic socks. I was contacted and offered samples for testing and agreed to accept the samples. This post is a review of the S Lab NSO line of Salomon trail running socks- it’s their top-line offering and includes quite a bit of technology. After extensive use of the NSO samples I subsequently purchased six pair of one of the NSO variants, so although I did accept samples, I personally purchased the product because I liked it.

My past use has included three models of Salomon socks, the most recent being a very minimalist sock called the “Sense” sock. It was introduced in 2015 or so and I have been using it since. I bought six pairs and they have only this past season begun wearing out (at the heel counter and in the heel base). That’s four full mountain running seasons of wear and tear and represents excellent durability. The performance was outstanding as the socks provided sufficient protection yet were thin enough to not be intrusive and they dried out very quickly. I had similar experience with prior versions of Salomon socks and have found them to be among the best offerings at any given time.

I am not convinced that a running sock should provide padding and these “Sense” socks provided no padding. I prefer to let my selected shoe provide whatever cushioning I need- the cushioning is where it needs to be and is stable and not potentially moving around or changing fit levels. This is just my preference as I know many runners are convinced that their highly cushioned socks are an important part of their comfort and performance. The following review of the Salomon S Lab NSO socks will be colored by this preference of minimal cushioning.

Salomon S Lab NSO Sock line

Salomon have chosen to divide the S Lab NSO running sock line into three variants- Short Run, Mid Run, and Long Run. The socks have increasing levels of features and technology as the intended use as a function of run length is increased. I’ll review the included technologies and features for each variant but will start with an overview. There is also an NSO compression sock (NSO Leg Up)  that I will mention at the end of this post. The “science” (such that it is) is undecided on the efficacy of compression for recovery and/or support in running and I’ll address that later.

Salomon S Lab NSO 2019 sock line including, Short Run, Mid Run, and Long Run as well as a compression sock called the Leg Up.

nso sock technologies

The “NSO” in the S Lab NSO “Short run”, “Mid run”, “Long run”, and “Leg Up” sock designations refers to the “enso” Zen Buddhist single-stroke calligraphy of a circle. Enso drawings are a part of meditative practice and take many meanings including “harmonious cooperation”, which is the intended meaning put forth by Salomon. More on the “cooperation” aspect below.

Salomon works with their athletes and Intersock Group to design and manufacture the sock lines. This involves interaction of the most demanding users (elite athletes) with the experienced Salomon designers and the sock technology experts at Intersock Group.

The primary new technology offered by the NSO line is based on oxide particle infusion of fabrics. Fabrics with appropriate composition oxide particles are claimed to provide far infrared radiation reflection and emission*. In Salomon’s words- naturally generated heat (including far infrared wavelengths) from the body interacts with the oxide particles in the fabric to “activate and reflect this energy, enhancing muscle tone, recovery, and balance”. Wow, that’s a lot of function from some oxide particles! But let’s back up and look into the proposed basis for this technology.

photobiomodulation (pbm)

Photobiomodulation (PBM) is process in which low levels (fluences) of light energy are utilized to interact in a positive way with human tissue. PBM (also known as Low- Level Laser Therapy (LLLT)) has found utility in treating medical conditions including  hearing loss, foot tendinopathy, diabetes, cardiac conditions, and cancer. PMB is increasingly being accepted as a promising treatment therapy. That, of course, as in any “medical science” claim, does not mean that the therapy is efficacious. It may just mean that a new experimental therapy which has a large placebo effect can be easily made into a profit center. Such is medicine today.

The applications of PBM for athletic endeavor include the use of such treatments to assist in dilation of vascular tissue. Specifically it has been found that nitric oxide synthase (NOS) (an enzyme) participates in numerous biological processes by enabling the in-situ production of NO (nitric oxide) within tissue. NO is claimed to be critical to regulating something called vascular tone. Vascular tone is the degree of constriction of vascular tissue. NO production is associated with vasodilation and therefore promotion of the formation of NO is viewed as being a positive outcome for athletic activity.

NO production is also claimed to be critical to general athletic performance. As usual, the many claims are not well supported (or even supported at all) but you can do your own background reading and decide independently. Beware anything scientific being written by MDs- they are not scientists.

Further, it has also been claimed that NOS production (and therefore NO) is enhanced by radiation of human tissue with far infrared (FIR) wavelengths (about 5 microns-1000 microns (1 mm)). This is a wavelength region situated between mid infrared/near infrared (MIR/NIR) and visible light on the short wavelength end and microwaves on the long wavelength side. Infrared radiation has colloquially been referred to as “heat waves” since this radiation, which is invisible to the human eye, can heat a substance that is comprised of molecules that can oscillate under the influence of the radiation. The molecule movement produces internal friction that results in heat.

For FIR irradiation, water and human tissue are found to be excited by these wavelengths and it is proposed that this excitation can lead to both internal heat generation and enhanced production of NOS and therefore NO. Inference and some observational data indicate that reduced vascular restriction can result from FIR irradiation. FIR, at appropriate intensity, is experienced by the human body as a gentle heat which is a direct result of the interaction of this radiation with human tissue.

OK, so much for NOS and NO (and not to be confused with NSO!…).

Now, it is well known that certain inorganic materials and certain polymers can efficiently reflect and/or emit FIR wavelengths when irradiated with equal or higher energy rays (i.e. FIR wavelengths and shorter). The inorganic materials most prominently used for FIR reflection/emission are primarily mineral oxide compounds such as tourmaline (a naturally occurring borosilicate compound). Fabric manufacturers have been developing products that contain nano-sized particulates of these FIR reflector/emitter compounds. It is asserted that the FIR radiation that naturally emanates from the human body is reflected back into the body and that this can promote increases in NOS and, therefore, NO and, therefore, decreased vascular restriction. Obviously, athletic clothing has been a primary focus for the fabric manufacturers since keeping blood flowing will have only positive effects for both performance and recovery. This proposed effect is also where Salomon have used the “enso” (NSO) connection- the body’s natural generation of FIR is reflected back by the oxide particles and assists in vasodilation via a synergistic, “enso”-like, “harmonious cooperation” process.

There exists scant data that supports any measurable efficacy of the use such FIR reflecting particle-infused clothing in athletic endeavor. There are, however, more reliable, although not conclusive, data for other applications of the use of FIR for treating certain medical conditions (e.g. lymphedema) that have been interpreted as being the result of FIR-induced vasodilation via the NOS-NO pathway. So there is promise but no clarity at the moment on application in athletics.

Lack of data has never stopped marketeers (or “woo-woo” medical practitioners), particularly when what is being marketed involves increased human comfort or, in the case of athletics, increased performance or recovery. And that is where we are today with the use of inorganic particulates in athletic clothing- an essentially made-up advantage (that may or may not end up being real) with manufacturers claiming efficacy and users claiming positive benefits- all without supporting data. Of course we should not ignore the reality of large placebo effects that may be at play as well.

Back to the S Lab NSO socks. What Salomon have done is to include mineral oxide infused fabric in the sock to promote vasodilation in and around the foot and ankle. Feet and ankles, as all runners know, are (and excuse the pun) the Achilles heel of running since all propulsion is centered around the foot and any issue with ones feet (including the Achilles) will very adversely affect ones running. Having strong, high performing, and quickly recovering feet and ankles is critical to being able to train and perform at our best. Salomon are proposing that these socks with FIR reflecting mineral particle infused fabrics will improve our running performance and allow for quicker recovery. Perhaps this is true, but perhaps not, and only further data, analysis, and mechanistic scientific work will give us answers. In the meantime it probably does not hurt to try the technology, make personal observations, and come to some position on the subject. It is claimed that the nano-particles are inhert to the body and serve only to emit/reflect FIR radiation into the body, so there appear to be no downsides to trying these fabrics out. There is, however, the overriding concern about physical absorption of nano-particles into the body and bloodstream and any possible adverse health effects due to absorption of these particles in either short or long term. Something to think about but I’m in the camp that provided the sock performs well as a sock, having some other potential feature that may assist in performance and recovery is a positive thing and worthy of trying out. You can make your own determination.

SAlomon S Lab NSO sock line details

As noted above Salomon is offering the NSO sock line in three variants, each focused on different run “lengths”- short run, mid run, and long run. The primary differences are in the level of cushioning and compression offered by each variant with the highest amount of cushioning and compression being in the long run sock. All of these socks are designed enanitiomorpically, i.e. the socks pairs have a left and right.  But there are other differences as well and I will review them here.

Nso short run

The Short Run variant of the NSO sock is a minimalist sock that provides a thin layer of cushioning at the heel and toe and thin or super thin materials everywhere else. For those that like a minimalist sock (as I do), this version of NSO line will likely be appealing.

Top side of the NSO Short Run sock. Note the super thin material through the mid-section and the four “stripes” across (and around) the sock in the forefoot. The “stripes” have a slightly sticky silicone material coating that is intended to help hold one’s foot in place under demanding situations like steep downhills, steep ascents, and technical trail.

This model has the least amount of technologies in the NSO line but does include the oxide particle fiber material (Quantum Energy). The other features of this sock are extreme thin-ness in the mid-foot and ankle area and represents one of the most minimal of socks out there for trail running.

Salomon NSO Short Run. The entire NSO line in enanitiomorpic- meaning all socks have a left and right.

Minimalist socks are my preference and the NSO Short Run is an outstanding minimalist offering. They are very lightweight and have a skin-fit with flat seams. The heel and forefoot cushioning is noticeable but not annoying. The silicone “stripes” intended to keep the foot from moving within the shoe seems a bit unnecessary. It is my position that the fit of the shoe is what will take care of that — buy a properly fitted shoe and there will be very little movement within the shoe. Another reviewer of the Salomon NSO sock line** thought highly of the silicone “stripes” as they could make a badly fitting shoe work better. Well, why run in a badly fitting shoe? Particularly if you are using Salomon shoes with EndoFit, SensiFit and the other “fit” technologies that make Salomon the superior shoe for fit. Let the shoe do what it is supposed to do and do not depend on a sock to fix a badly fitting shoe. The “grip stripes” are present in all three variants of the NSO sock line and the comments above apply to all the variants.

Salomon NSO Short Run. A very minimalist sock with a skin fit and lots of technology.

The “short run” sock has performed very well in a wide range of conditions from early spring wet and snow to super dry and “moondust” summer conditions. They dry quickly, are transparently comfortable, breathe exceedingly well, and do a good job of keeping tiny dust particles in dry conditions away from the foot. The sock is very thin in certain areas (e.g. across the middle of the foot where shoes are generally cinched down). This eliminates any concern with thick, bunched up, fabric in this critical area. As a result the socks essentially disappear and just do the job of protecting your feet from abrasion and dust. Is the NSO technology doing anything? I don’t know. I do know that these socks are a great choice for those who like a minimal sock. This is my current go-to sock and , as indicated above I bought six pair of this “short run” variant for daily use.

NSO Mid Run

The Mid Run variant in the NSO line adds a bit more cushioning throughout the sole and mid-foot of the sock whilst maintaining all of the technologies in the “short run” model. This variant also includes something called Nano-Glide, a polyamide coating on the fibers that minimizes friction between skin and the sock. The Nano-Glide technology has been used in Salomon socks for at least 7 years and I can attest to it’s efficacy. I have never had a blister, hot spot, or even a red spot while using socks with the Nano-Glide fiber coating. My only gripe- Nano-Glide socks can be difficult to slide through certain tights. It is apparent that the materials that some Salomon tights are composed of “catch” the Nano-Glide coating and make it difficult to get your foot through when putting on the tights. I’ve noticed that the latest Salomon tights that I have do not exhibit this issue.

Top side of the NSO Mid Run sock. Note the compression knit through the mid-section and the five “stripes” across (and around) the sock in the forefoot. The “stripes” have a slightly sticky silicone material coating that is intended to help hold one’s foot in place under demanding situations like steep downhills, steep ascents, and technical trail.

There is also a limited amount of compression in the mid-forefoot area and around the lower part of the ankle. Based on available evidence in many studies, compression shows no reliable efficacy but there may be a significant placebo effect. So although there may be no real performance advantage, you might “feel” better with compression and, to be honest, that is what matters particularly in long runs and races. I do not have this placebo effect so compression is not something that I look for, in fact I find it to be annoying in some cases. But — to each their own!

The Salomon NSO Mid Run adds some compression knit in the mid foot, forefoot, and lower ankle, as well as NanoGlide- an anti-friction polyamide coating on the fibers.

This is still a very lightweight sock and can be viewed as the Short Run with the anti-friction NanoGlide technology and a small bit of compression mixed in. I find the fit to be excellent and the cushioning unobtrusive. They dry very quickly and provide high performance  for the basic purpose of a sock- protecting your feet from abrasion and dust. The Short Run variant is my daily-use sock but the Mid Run is often in the mix and it is hard to tell the difference between the two when running. So if you like a bit more cushion the Mid Run might be an option.

Salomon NSO Mid Run. The compression knit is more visible from a side view.

NSO Long Run

The Long Run variant is the sock that Salomon designed specifically for Francois D’Haene, the long distance specialist on the Salomon team. I’ve seen pictures of the Salomon designers/engineers working with D’Haene on these sock and concentrating on features in and around the ankle. As anyone who has run a 100 km+ race will know, ankle protection and comfort is critical to an enjoyable day and it apparent that Francois is particularly interested in this.

Top side of the NSO Long Run sock. Note the substantial compression knit material through the mid-section and ankle. The four “stripes” across (and around) the sock in the forefoot have a slightly sticky silicone material coating that is intended to help hold one’s foot in place under demanding situations like steep downhills, steep ascents, and technical trail. This variant also includes a padded area at the medial malleolus and a directional knit pattern at the lateral ankle. Note: left and right are reversed in this photo, so the medial malleolus padding is on the medial side of the socks — not on the lateral side as shown here.

The Long Run variant is basically a Mid Run with a lot more compression throughout the mid foot and ankle area. The sole, heel, and toe of the sock is virtually indistinguishable from the Mid Run including the NanoGlide polyamide coating technology. The Long Run has a couple of other features: a padded area at the medial malleolus (the knobby ankle bone) and a directional knit structure in the lateral ankle area. I understand the padding since, as when one gets tired, it is common for the medial malleolus to get “scuffed” by the opposing foot as it comes by on the run stride. You’ll see this after a run or race where scuff marks are evident in this area. In long runs and races this can lead to abrasion and pain so putting a bit a padding there makes sense. The directional knitting on the other hand seems superfluous. It falls in the same category as KT tape- useless. There is no reliable evidence that such minuscule directional tension does anything efficacious. But again, there may be a significant placebo effect so some may “feel” a difference.

The Salomon NSO Long Run showing the substantial compression knit throughout the forefoot, mid foot, and ankle. Also note the padding at the medial malleolus.

Side view of Salomon NSO Long Run sock showing compression knit and padding at ankle. Note that the entire sole of the sock is virtually identical to the Mid Run variant.

The Salomon NSO Long Run variant also includes a directional knit pattern oat the lateral ankle. Does this do anything? Probably not, but it looks cool!

The Long Run variant is a bit more of a chore to get on due the compression knit but once on it is very comfortable. Even with all of the added features it is still on the minimalist side of trail socks currently available. I find the fit to be excellent and the comfort is great. It is maybe a bit too much sock for me but I did run in this sock for a 30 km mountain race with about 1500 m (5000 ft) of climb and descent. The sock performed well and essentially disappeared- meaning that I had no thoughts about socks during the race which is exactly what one wants. I thought that a bit of extra cushioning might be desirable for a race that started out with a 6 km (4 mi) 750 m (2500 ft) climb followed by a 5 km (3 mi) 500 m (1500 ft) descent. Perhaps there was an advantage but the difference I felt was minor if at all.

price

As with all Salomon S Lab products, these sock are expensive at $28-$30 a pair, depending on the variant. But they do provide a lot of technology and some unique features all while maintaining a lightweight, minimalist ethos. Also, if the socks are as durable as other Salomon socks have been in the past, you will be using these for years and the price point then looks a bit better.

bottom line

A high technology line of high performance socks that will appeal to many trail runners, independent of specialization — from technical trail aficionados to long distance grinders. Does NSO do anything? Who knows but as with any new technology time will tell. In the meantime, the Salomon NSO line of socks offer a minimalist solution for whatever “style” of trail running you might partake in- all with excellent fit, protection, and support. And they all dry very quickly. For me it all comes down to whether or not a sock “disappears” when I use it. These do and I expect to be training and racing in these socks for years to come.

final note

As indicated at the outset, thee NSO line includes a “Leg Up” variant that is a full knee height compression sock. Although I have tried this sock out, I personally find the compression to serve no purpose other than to be annoying. So I provide no full review here. There are many others that find compression to be functional and I encourage those that do to check out the “Leg Up” NSO variant. If there is any model in this line where the NSO technology is likely to be apparent it will be in the “Leg Up” where the NSO fiber material is covering toe to knee and any FIR effect that is extant should be maximized.

*Note: Salomon also have an S Lab NSO Tee and an S Lab NSO Half Tight that utilize the same technology.

**Note: a couple of the pictures of the socks in that review are incorrectly correlated with the sock type- specifically they show the NSO Short Run as the Speed Support and the Speed Support as the NSO Short Run.

 

 

Advertisements

Salomon RX MOC 4.0 “Recovery” shoe – Review

I have reviewed all of the previous generations (Gen 1, Gen 2, Gen 3) of the Salomon Relax “recovery” shoe and have found the products to be very comfortable and to provide support that helps with foot recovery after long and/or technical trail runs/races. The RX Moc has been a daily wear shoe for me ever since it was offered in 2010/11 and the 4th generation is no exception.

Salomon “Relax” RX MOC 4.0

RX MOC 4.0

The outsole of the RX 4.0 is the same as in the 3.0 version and provides plenty of grip for general casual use and even the occasional foray onto trails and rock when camping/traveling.

The RX Moc 4.0 is an evolutionary product that builds upon the features, design, and function provided by the prior generations of the product. These functions include high breathability, a very “cushy” midsole, a grippy outsole, and, most importantly, a footbed design that provides support around the edge of the foot. All of this carried forward in the 4.0 version along with adding a couple of new features/materials.

But the most important feature is the “cupped” footbed that supports the edges of ones feet and that allows for comfortable walking/hiking even after a long trail run/race. As I wrote in the earlier reviews:

“The concept is that after running there are certain muscles in the feet that are more impacted by long training runs/races and require additional support after the training run or race for efficient recovery.”

My experience is that the concept works- but even if it is a placebo, the shoes are super comfortable, machine washable, and highly durable.

Top view of the RX 4.0 showing the redesigned mesh upper but the same toe bumper of the 3.0 generation.

Side view of the RX 4.0 showing the sculpted last carried forward from the 3.0 generation.

changes from 3.0 to 4.0

The primary change with the 4.0 vs the 3.0 is that the heel counter is now designed to be crushed down and thereby allow for use of the shoe in either a traditional way (with heel counter) or as a slip-on (e.g. like a clog). Many users of past models of the RX Moc have chosen to just ignore the heel counter and use the shoe as a slip on. Unfortunately the heel counter was not designed to be crushed or to be rubbed by the heel. As a result those that used the shoe in this way (including myself) found  that the crushed heel counter developed holes and this compromised use as a traditional shoe. The new design allows for both comfort and durability in switching back and forth between use types- it’s a great idea! All one has to do is remove the insole, push the heel counter down, and replace the insole- presto, you now have a slip-on.

After listening to their users, Salomon have provided a heel counter that is designed to be folded down to allow the RX 4.0 to be used both as a traditional shoe and as a slide-on. Many users of past versions did this anyway but the heel counter would wear out (develop holes) and limit the use of the shoe. Now this feature is designed in- great!

Just remove the insole, push down the heel counter, and replace the insole and presto- you now have a slip-on!

The other significant change from the 3.0 version is the insole. The 3.0 had a two layer insole that was comprised of a cushy polymer underlayer with a thin, grained faux-leather top layer. The 4.0 version has a single cushy polymer insole without a faux-leather layer. My use found that eventually the faux-leather insole layer began to delaminate from the underlayer. This occurred after many (about 25-30) machine washings. Such washings are rather rough on any adhesive system so this experience is expected. However, the faux-leather never fully delaminated and the small amount of delimitation never affected the performance of the shoe. In any case, Salomon have decided to replace the faux-leather with a one-layer system which, so far, is just as comfortable and will likely be as durable.

A minor change with the 4.0 is the mesh fabric pattern on the upper. The 4.0 has a two-piece pattern that wraps diagonally across the top of the foot whereas the 3.0 pattern is a two-piece “serpentine” pattern that is longitudinal. I do not feel a substantial difference between the two with the exception of the 4.0 feeling a bit more “huggy”. This could just be due to the fact that the 4.0 is new but time will tell.

One of the nicest aspects of this shoe is the washability. One can just throw these in the washer and let them air dry and a shoe that was quite dirty comes out looking as new. This was particularly important for the “orangey” S Lab 3.0 model that I have been using since 2013 as it would get quite dirty given daily use across many activities, including camping. I expect the same to be the case for these black 4.0’s

outsole

As mentioned above, the outsole is nicely grippy for a casual, street shoe. The outsole, however, has areas that are not particularly durable. The area within the rubber tread layer that nearly circumscribes the sole is the “chevron” pattern area that appears to be made of “midsole-type” material (likely EVA). This material does not wear well and I have found it to be essentially smoothed out within about three seasons of my daily use (April-November). That’s still a lot of use and the rubber area is still intact and quite grippy, it’s just that the total grip of the outsole is somewhat diminished. This has not prevented me from using the shoe as it still performs well even without the “chevron” pattern being present- now six years later! Just something to note.

 colorways

As this is a casual shoe, the colorway choice can be important for some users. The 4.0 is available in black with a black midsole (as shown here), blue with a white midsole, and red with a white midsole. That is quite a limited choice. In the US only the black and blue variants are available. I find the white midsole to look a bit “clunky” but that is just my opinion.

In the past there has been an S Lab version of the RX Moc and these variants were what I have reviewed earlier. The S Lab variant was just cosmetic- special colors and S Lab badging, so the shoe itself was the same. The 4.0 does not offer a S Lab variant for the 2019/20 season. Perhaps there will be one in the future. I must say that I like the black version as it blends well with many situations- athletic, casual, and, for some here in the mountains, even for more formal occasions. I likely will not wear any other casual shoe throughout the spring-summer-fall.

price

$75 US. As usual a bit on the high side but given the comfort, the foot recovery aspects, the flexibility to transform the shoe from a traditional fit to a slip-on, and the durability that I have experienced, this shoe represents a reasonable value.

bottom line

A nice evolution of a proven casual/recovery shoe with high comfort, durability, and flexibility. Highly recommended!

 

Salomon S Lab Modular Shorts System – Update

I reviewed the Salomon S Lab Modular Shorts System a couple of years ago and found the system to be very comfortable, flexible, and of high quality. After two years of use on a daily basis during the running season (April-November), I have confirmed those initial impressions and found the system to be exceedingly durable, particularly given the ultra-lightweight materials that the system is comprised of.

Salomon S Lab Modular Shorts System used by the author: boxer base layer, 4″ top layer, and integrated belt. Image taken after 2 running seasons (or approximately 4000 miles (6500 km) or 400h of use over 3-6 boxer layers and 1-2 top layers). The base layer shown has been laundered about 60-70 times.

use

The parts of the S Lab Modular shorts system that I use are the boxer base layer, the 4″ top (vanity) layer, and, for racing and long runs, the integrated belt. I have logged over 4000 miles or about 400 hours of mountain trail running in this shorts system and have laundered the individual elements up to about 60-70 times in a standard european-style washing machine (Bosch Axiss).

Running conditions have generally been in temperatures from about 40 F to about 85 F with generally low humidity (<50% rel., typically <20% rel.). Although I expect that the shorts system will perform similarly in more humid environments, I have no direct experience with these shorts in high humidity (>50 rel.) conditions.

experience

Long-term experience with the system echoes my previous review:

“An “uber” comfortable, flexible, and high performance shorts system for trail running and racing.”

The comfort of this system is outstanding which means that one never actually thinks about the shorts while running. They go on, stay in place, and essentially disappear. The base layer articulations provide excellent support whilst being very lightweight and breathable. The top layer (or vanity layer) is so light and breathable that it is very much just what it is intended to be- a vanity layer. If not for social norms, one could run in just the base layer.

Boxer base layer after two running seasons of use. Still very comfortable and soft. Hem-less hems show minimal wear and a very small amount of fraying.

Close-up of the boxer base layer showing the extent of fraying on the hem-less hems- surprisingly very little.

Area on the front edge of the waist of the boxer base layer after two seasons of running showing delamination of the “sticky” silicone “stripes”. This is the only area where the “stripes” have delaminated. The delamination has not affected the performance of the shorts in any noticeable way.

After trying the 6″ variant, I have opted for the 4″ top layer with the boxer base layer. This selection is the most minimal pairing of the modular system and doesn’t try to provide anything other than functional support and a bit of protection. Initially I used the 6″ top layer and found it to be too long and then found the 4″ top layer to be too short. After extended use of the 4″variant I have now converted entirely to this length as it really does disappear and not interfere with any running activity yet provides sufficient coverage and protection.

4″ top layer after two running seasons of use. With the exception of a bit of stretch-out of the elastic waist sections, the top layer is fully intact and continues to perform to expectation.

Close-up of waist area on 4″ top layer showing absence of fraying and no delamination of the silicone “stripes”.

The other options in the system include compression support base layers (both “exo” and conventional) and longer form factors for top layer (up to 9″). These other options attempt to provide additional functionality and protection neither of which I have found to be necessary or efficacious. I suggest that one stick with the minimal system until which time that there are data that support the utility of compression wear for athletic endeavor. At this juncture the entire compression wear industry is based on hype and conjecture. See Aschwanden’s book for a full review of the efficacy of compression wear and compression technology in sports. I still do not understand the recent trend for “basketball” length shorts for running.I don’t understand them for use in basketball as well so perhaps I missing something.

The durability of this super lightweight system has been surprising given how little fabric there is. I was concerned about the durability of the hem-less hems and the grippy silicone “stripes” at the waist, thigh, and in other strategic places. Both of these features have held up well over this two year period and the only noticeable degradation is with limited delamination of some of the silicone “stripes” and a small amount of fraying at the hem-less hems. Otherwise the system is entirely intact and remains as comfortable as when new. Even after over 60 launderings, the layers are comfortable and have not lost any function and the fabrics have stayed soft to the touch.

Although I have only used the boxer base layer and the 4″ top layer, it is pointed out that since similar materials are used in the other variants in the system it is expected that similar comfort and durability will be experienced.

Modular integrated belt

I regularly use the integrated belt for longer runs and longer races and find that it provides sufficient carrying capacity for 30-50 km training runs and for supported 30-50 km races in the mountains. With the highly stretchable pockets I can load sufficient calories and water for a good 4-5 hour jaunt through the mountains at aerobic training pace. Add with some protection (light windbreaker (S Lab Light jacket), long sleeve shirt, warm beanie hat, and gloves) in case the weather turns and you are entirely sufficient. I no longer use a vest unless it is on an adventure (typically off-piste) run where additional equipment is necessary (e.g. traction devices, heavier clothing, etc.).

Salomon S Lab Modular Belt after two running season of use. Great carrying capacity, comfort, and flexibility.

Although designed to be integrated with the base layer via a series of three snap attachments at front and rear, I find that the belt is sufficiently secure that one does not have to use the snaps if this is preferred. It also means that the integrated belt can be used with other set-ups beyond the modular system.

price

As I explained in the initial impressions review, the S Lab Modular shorts system can appear to be expensive at first glance. But I noted then and have adhered to an approach that makes the system much less expensive than it would appear. Since the top layer is essentially just a cover-up for the base layer (it never really touches the body and rarely gets moist with sweat) it can be used numerous times prior to laundering. In addition, even if the top layer did get “crusty” it is easily rinsed out and will dry in less than 30 minutes (at least here in a low humidity western US environment). As a result of this, I will use the top layer for 3-5 runs before laundering it. Since the base layer is in direct contact with one’s body these are laundered after single use. I have six base layers but only a couple of top layers. The base boxer layer is $60 US and the top layer is similarly priced and therefore a “single” short system is $120 US (this is actually less than the pice of the prior  S Lab Sense short ($150 US) that was replaced with the modular line). Add to this that you actually get 3 shorts by buying three base layers and one top layer for a total cost of $240 US, or $80 US/”short” which is competitive with other high quality, high technology shorts currently being offered.

bottom line

A very comfortable and highly durable trail running short system that offers a wide range of options to suit individual needs.

Salomon S Lab Ultra – Final Update- 2500+ km and still going

I reviewed the Salomon S Lab Ultra trail shoe last July at about 1000 km of use. The shoe was performing well across the board and was stacking up to be better than the excellent S Lab Sense Ultra that proceeded it. The fit, stability, and comfort were superior to any Salomon shoe that I have used. The SensiFit “stability”  straps that were initially considered overkill or gimmicky have been found to be highly functional in truly technical terrain. The only downside to the shoe was the weight- it weighs more than the S Lab Sense Ultra by almost 10%. But I have never specifically noticed the increased weight and perhaps that is because of the slightly improved fit, increased stability, and overall superior comfort of the S Lab Ultra when compared to the Sense Ultra.

Salomon S Lab Ultra after about 2500 km of trail use. An old friend ready to retire.

This post will document exactly how well the S Lab Ultra has held up for use exceeding 2500 kms- the bottom line: exceedingly well!

use

I have used the S Lab Ultra for a wide variety of training and racing. These uses include 10-13 h of weekly trail running on 50/50 (technical/smooth) trails in the Northern Rocky Mountains, many 1 hour bounding sessions up steep terrain, many lactate threshold (LT) and VO2max interval sessions in hill repeat mode, many LT and VO2max interval sessions on rolling terrain at and exceeding critical velocity, numerous trail races from 20 km to 42 km, and a little bit of road running*.

The S Lab Ultra has performed outstandingly in all of these uses and particularly in steep, loose climbs and descents. The SensiFit “straps” do a great job of stabilizing the foot in loose conditions and allow for noticeably more traction and control. The shoe has been an all-around performer.

I have just now retired these shoes. Although they are still performing, I feel a bit less traction on downhills due to lateral heel wear and rather than go down I have started a new pair for the season.

It’s remarkable that there are any lugs left but the lateral heels are essentially gone after 1200 km or so of mostly steep, rocky downhills.

upper

With the exception of the S Lab Sense Ultra, I have found that trail running shoes typically wear out somewhere on the upper first- developing a hole and allowing debris into the shoe and thereby making the shoe not useable. In the case of the S Lab Ultra (as in the predecessor S Lab Sense Ultra), the upper has been incredibly durable. Only in the last 500 kms have any holes developed and those that have are very small and have not allowed debris into the shoe. The following are a few images of the various areas where holes have developed or abrasion has begun to compromise the upper.

It is apparent that the substantial polymer overlays used in S Lab Ultra have increased the durability of the upper as these overlays both protect the underlying fabric and limit the extent to which a hole can grow. This is perhaps not a primary intended use of the overlays but it certainly has worked out that way. With the exception of the S Lab Sense Ultra, the uppers of other S Lab shoes without these more extensive overlays have worn out much earlier due to large holes.

The fit has remained “ultra”-comfortable throughout the life of the shoe. The shoes have become very much an extension of my foot and essentially disappear from my thoughts while on technical terrain allowing a total focus on foot placement and rep-rate.

midsole

This is likely the most remarkable experience with these shoes- the midsole is just not loosing it’s cushioning effect or rock protection. Although certainly less than a new pair, the midsole comfort is still there and still allows for long runs with no concern for foot comfort. In addition the ProFeel Film rock protection is entirely intact and performs as well at 2500 kms as it did when new, although exhibiting a bit less longitudinal stiffness. The S Lab Sense Ultra midsole and rock protection began to breakdown somewhere around 2000 kms- excellent performance but this shoe is even better.

outsole

The outsole has been similarly durable and the Premium Wet Traction ContraGrip compound has performed well throughout in both wet and dry conditions. With the exception of lateral heel and forefoot wear, the lugs are still providing excellent grip across the board. At 2500 kms this is nothing but remarkable in my experience.

This use works out to about $0.12/mile ($0.07/km) which, with the exception of the S Lab Sense Ultra 2017, is about a factor two better than any other shoe that I have used.

issues

None, yes none! I put these shoes on and have run over 1500 miles in them and never once had to deal with an issue, discomfort, or compromise.

bottom line

An outstandingly durable, high performance trail shoe that will not disappoint. Given that the 2019 replacement S Lab Ultra 2 has only minor changes (it appears that Salomon have only removed the forward-most SensiFit strap and left everything else alone) one can expect a similar experience with the new model.   Some have noted that the last is a bit narrow so try these shoes on to ensure that the “narrowness” is acceptable. The Salomon S Lab Ultra is highly recommended.

*(Although I will run distances greater than 50 km in training, I do not race ultras anymore. I find the GI issues to be not only annoying for a competitive runner but, more importantly, I have the basis to assert that these GI issues are unhealthy. So no more ultra races for me.)

Training for the Uphill Athlete – Review – a new milestone in quality and thoroughness in a training guide for the endurance athlete

summary

The book Training for the New Alpinism by Scott Johnston and Steve House set new standards for thorough, science and coaching-based training advice for alpinists and endurance athletes alike. Although focused on fast and light alpinism (aka “new” alpinism), Johnston’s background as a coach in cross country skiing permeated the book and, as a result, much of the book could be easily applied to other endeavors- like cross country skiing, mountain running, and ski mountaineering (SkiMo). With support from Patagonia as publisher, a large emphasis was placed on clear, high quality, information-dense graphics that were far superior to anything else available at the time. I highly recommended this book when it was published and continue to do so today.

Enter this new volume from Johnston and co-authors Steve House and Kilian Jornet that is focused on mountain running, ultra running, and  SkiMo. Along with the same science and coaching-based guidance, similarly superior graphics, a unique focus on strength development, and an excellent handbook to developing your own training plan, “Training for the Uphill Athlete” represents a new milestone in quality and thoroughness in a training guide for the endurance athlete.

In this book one will find a nicely presented approach to training for “uphill” endurance sports such as mountain running and SkiMo. Throughout, the authors provide a scientific and/or coaching-based foundation for the specific training programs being described. Of particular note are the sections on ATP production and lactate metabolism- the best presentation of this material that I have been exposed to. All of this gives the reader the basis for (or a starting point for) development of a personal training “philosophy”- something that is critical to the success of any training regimen. As is pointed out frequently in the book, each individual presents a unique combination of physiology, biomechanics, life situation, and personality. Provided with a basic foundational approach and the specific tools needed to enable successful, progressive training , the reader is well positioned to be able to design and execute upon a training program that is aligned with his or her abilities, time, commitment, and goals.

The overarching mantras laced through the material are:

aerobic base development, “progression, progression, progression”, and the critical importance of substantial integrated strength training elements

Too many athletes and recreationalists ramp training up too quickly, incorporate intensity too soon, suffer injury, and, potentially, burnout. By properly progressing training load and intensity and integrating strength sessions into the program such “training errors” can be largely avoided. These themes are regularly brought forward and discussed throughout the book and recommendations are provided to help the reader incorporate appropriate progressions and strength programs.

Although of limited value, the book is punctuated by sidebar stories and opinions from representative uphill athletes- both elite level and some well-known sub-elite athletes. I find these individual essays to be more of a hinderance to the authors otherwise successful goal to provide clear guidance but I know that many find such stories inspirational.

Also included are “Kilian’s Notes”- short sections where Kilian describes his training history, training methods, and some specific workouts. Again, I find these of limited value as they are coming from an athlete who has been in intensive endurance training since he was 13 years old, with a 90+ VO2max, mental fortitude that is similarly off the charts, and has raced thousands of times. Having trained with athletes with some of these attributes, I can say that what they do is not particularly relevant even to those with relatively high VO2max and long histories with training for endurance sport. If you have ever competed against or trained with someone with a 90+ VO2max you will know what I mean. I suggest that one take these Kilian missives as just that- an entertaining peak into what such an extraordinary and accomplished athlete does and not a prescription for anyone else. Unfortunately there is no warning to this effect in the book.

I have found little to disagree with in this book with the exception of the science fiction provided on “fat adaptation” and a “hook-line-and-sinker” devotion to the persistent hunting theory as a basis for understanding human endurance abilities. But these are minor items and thankfully nutrition is not a focus of the book so it is easy to let these go and concentrate on all of the truly valuable information and presentation in the book.

I highly recommend this book for anyone who is interested in understanding fundamental endurance training concepts, evolving a personal approach based on these concepts, and developing a reliable, flexible training plan that will, with consistency and commitment, lead to success and goal achievement in endurance sport.

DETAILED review

Clearly the vast majority of the material in “Training for the Uphill Athlete” is of high quality with valiant attempts to align current science and coaching-based experience into the presented training guidance and training plan development. There are, however, a few areas where unfounded or not fully founded concepts are presented as “fact”. I’ll cover these along with a more detailed look at the author’s proposed training program synthesis and associated training plan development guidance.

Chapter 2 “Physiology of Endurance”

This is an excellent chapter that presents a clear and engaging discussion with excellent graphical representations of the  metabolic, physiologic, and biomechanic factors that lead to endurance. The concept of the lactate “vacuum cleaner” is very useful in helping one understand the processes taking place that will lead to enhanced endurance performance. All of this leads to the statement of the Uphill Athlete Training Philosophy:

“You will never maximize your endurance potential without first maximizing your basic aerobic capacity (AeT)”.

If one were to take just a single thing from the book then this would be that thing. How you get there is covered in the rest of the book but absorbing the reality of this statement is fundamental to founding a training approach for endurance sport.

There are a couple of sections in this chapter that I think are in need of criticism. Although neither of these criticisms affect the sound training advice being given, they do represent areas where the reader needs to be vigilant in questioning everything that is stated and to not accept outright some of the proposed mechanisms. These issues are in the areas of the “Persistence Hunting” theory of human evolution and “fat adaptation”.

In the introduction to Chapter 2 “The Physiology of Endurance”, the authors end the  first section summarizing the popular “persistence hunting theory” of human evolution with the following:

“We are the product of an evolutionary heritage that has predisposed us to endurance”.

Although giving some latitude in the text to this being a theory, this final sentence has no substantial support in the form of conclusive (or even indicative) scientific process. There exist other competing theories and interpretations of what scant evidence there is that would allow any determination of how we, as homo (sapiens), evolved. The theory of Persistence Hunting remains an unproven, although appealing, postulate that will likely never be founded by data and analysis.  This is affirmed even in the reference that the authors provide to support their conclusive statement:

https://www.researchgate.net/publication/23227131_The_Relevance_of_Persistence_Hunting_to_Human_Evolution

David Carrier formulated the theory in 1984 and it has been “generally accepted”- how this has come to pass I have no idea but is nonetheless emblematic for what is happening in the “soft” sciences as it concerns unsupported conclusive statements and “generally accepted” hogwash.

For entertainment it is worthwhile to listen to a humorous short podcast by Scott Carrier (David’s brother and a former NPR “storyist”) that documents David’s and Scott’s attempt at putting the theory to work and run down some Pronghorn Antelope in Wyoming. This is a re-broadcast of a story Scott did for NPR in 1984. Look for the episode “Running After Antelope” on 3/19/2015 at his podcast website here:

https://itunes.apple.com/us/podcast/running-after-antelope/id972388330?i=1000338087072&mt=2

Moving on to the “fat adaptation” material, the authors present some data on page 63 that shows point data for %fat and %carbohydrate use as a function of %max heart rate for three individuals with supposedly different training backgrounds- a high intensity intervals-focused athlete, a “well-trained” endurance athlete, and an elite cross country skier. Concern number one is that the authors provide no reference for this data so that the efficacy of the testing could be checked. One has no idea if these data were ever peer-reviewed by experts or if the data are published. Using unpublished data is not appropriate for supporting generalized conclusions published in a book. Concern number two centers around the relevance of cross sectional data on individuals to any generalized advice. Without an understanding of many other factors (some confounding) that will influence the results shown, these data really have no scientific basis. They are cherry-picked graphs used to support a point being made in the text- something that is not acceptable. Use of representative peer-reviewed data from published references is the only acceptable alternative and even this type of data can be very deficient in this field of study. Without longitudinal data as well as data on individual enzymatic profiles (profiles which are temporal) there is no ability to put any generalized interpretation on what is presented. This is not to say that the arguments presented by the authors cannot be supported, just that they do not provide the appropriate references to peer-reviewed publications- an unfortunate oversight.

The subject of “fat adaptation” is often confused with the low carbohydrate high fat (LCHF) diet cult literature some of which the authors reference (e.g. Volek’s work). Here the authors use a simplified version of a graph from one such publication by Volek (who is one of the LCHF cult leaders). This is Figure 2.10 on page 62. The graph shows what apparently are average peak fat oxidation rates for two populations of subjects- “well-trained fat adapted” and “well-trained less-well-fat-adapted” (whatever these descriptions mean?). Searching out the reference (which was not given in the text but is as follows: “Metabolic characteristics of keto-adapted ultra-endurance runners”, Volek, et al., Metabolism – Clinical and Experimental, 65 (2016) 100-110.) and critically reviewing the article we find that all is not well. Firstly, this study is aimed at determining the difference in fat oxidation rate of well-trained (supposedly elite) athletes as a function of %VO2max with two populations- one that habitually consumes a high carbohydrate diet and another that habitually consumes a high fat-low carbohydrate diet (aka “keto-adapted”). The study is about the potential effects of diet on fat adaptation, not fat adaptation. Yet the authors are using the data to support a point in the text about how important it is to become “fat adapted” by lots of aerobic training (sometimes in a fasted state). Secondly, the graph presented in the book does not show the point data. Rather, the data are presented as large ovals with some whiskers on it. No explanation of the graph is given other than to point at a difference that the authors are using to make a point in the text. This is very poor writing and has no place in an otherwise science-oriented book. The figure from the actual publication shows large circles with whiskers as well as all of the point data from the individual subjects of the study. The text of the published article indicates that the circles represent the average value of peak fat oxidation and the whiskers are the 95% confidence intervals (CI). Further review indicates that the peak fat oxidation point data are generated at values of  %VO2max ranging from a low of about 38% to a high of about 81%. In the publication there is a companion graph that shows the %VO2max at the peak fat oxidation value for each of the study participants. Their data show that the LCHF group reaches peak fat oxidation values at higher %VO2max values (higher HRs) and the authors further argue that these LCHF subjects can therefore exercise at higher intensity whilst burning more fat than the high carbohydrate group, i.e. that their aerobic threshold (AeT) is higher because of the LCHF diet. Yet the book authors never even allude that the differences they are pointing to are supposedly based on differences in diet. In fact, the data and analysis (if you choose to put any credence in the dicey conclusions from such a limited and flawed study) partially unfound the argument that the book authors are making in the associated text. The authors of the published article propose that one can only maximize AeT by combining both substantial aerobic base work with a LCHF diet, whereas, contrarily, the book authors contend that AeT can be maximized by substantial aerobic base work in an often fasted or glycogen depleted state- no specific diet required.  These assertions are based on a definition of aerobic threshold HR as that HR where carbohydrate and fat are being consumed equally (the 50/50 point). Thirdly, the data in the Volek article is, again, cross sectional and lacks important data on enzymatic profiles and other potentially confounding variables; this is all in addition to the self-reported diet data (lowest quality of data). Fourthly, the authors of the published article assert that the study subjects are “elite” and use a definition of “elite” that I (and anyone else who understands the nature of elite performance) have significant disagreement with (e.g. a finish within 10% of the winner is definitely not elite). I suggest you read the article yourself as well as the many peer-reviewed published articles that have various levels of disagreement with Volek et al. One such article is:

Burke et al., Science 362, 781–787 (2018)*

There is no more defective literature than that of the field of nutrition (perhaps such defectiveness is only exceeded by the literature in the field of psychology) and add this to the already deficient situation in the literature in the field of exercise physiology and you have the recipe for gibberish cake coated with statistical frosting. Much of the data is observational and self-reported and therefore represents the weakest of all data types. And what about replication? Replication? Replication is a rare bird in these fields, yet it forms the essential starting point in the hard sciences. I do not want to minimize the difficulty associated with studies of the human body and mind as these difficulties are substantial, but the fact that something is hard to do does not give one license to make unfounded conclusions as is rife in these fields.

chapter 3 “The METHODOLOGIES of Endurance Training”

This is another excellent chapter that attempts to put some structure on how one might go about training and recovering to maximize performance in endurance sport. The primary issue I have with this chapter is that the authors present yet another, slightly different, intensity zone system to add to the confusion facing anyone who decides to get serious about training. While functional within the context of the programs described in the book, the presented zone system differs in number and range with other widely used systems (like Friel’s). I had hoped that this book might be the first to present intensity zones in the much simplified format suggested by Seiler in the past couple of years. Seiler argues that there are three zones for endurance training- aerobic base, lactate threshold, and VO2max. Theses zones are defined by the aerobic threshold (AeT) and the lactate threshold (LT or anaerobic threshold (AnT))- two easily measurable physiologic markers (the authors also use these markers to assign intensity zones, but choose to develop a system with 5 or 6 zones). Yes, these markers may move about by a few HR beats depending on individual exposure to training and other stressors, but they provide the only reliable basis for setting up a functional intensity zone system. The Seiler-proposed three zone system has a zone 1 that is defined by HRs at AeT and below (aerobic base training), a zone 2 that is defined by HRs at LT to -5% LT (lactate threshold training is at the high end of this zone and tempo work is at the low end) and a zone 3 defined by HRs at LT to +5% LT (VO2max work). No training is to be done outside of these three zones. This is essentially what the authors propose but just make it a bit more complicated by having other zones- zones that will not be used. I continue to lobby for the simplified three zone system.

The other issue with this chapter is the material on recovery where an ordinate list of the important recovery pathways is presented. I suggest that one read the book “Good to Go” by Christine Ashwanden. The author, a staff member at FiveThirtyEight, the well-known data-based journalism outfit, goes about using all the available data on efficacy of the many recovery methods and essentially debunks them all except sleep and floatation. Have a read- you will never foam roll or be massaged again! That is unless you want to take advantage of the placebo effect for mental issues.

chapter 4 “Monitoring your training”

This chapter does a great job at putting a framework around what an individual should be monitoring throughout a training plan, particularly as it relates to the potential for overtraining. This is an important subject and one that typically gets very little coverage in books on training for endurance sport. Yet overtraining is likely the single thing that derails or ends many careers in these sports. The material here is well placed and thoroughly presented.

chapter 5 “the application process: where theory meets reality”

Here the authors detail how to use their intensity zone system in a plan to maximize one’s aerobic base and then begin adding in high intensity work (tempo workouts, LT intervals, and VO2max intervals). Further reiteration of the importance of aerobic base capacity development is drilled throughout the chapter. It is difficult to come away from these first five chapters without the basis for a strong commitment to, first and foremost, ensure that your training includes a sufficient base period that allows for substantial aerobic base capacity development (and maximization for experienced, long term endurance athletes). This can take years to develop and it is pointed out that such longer term timeframes are an appropriate lens through which one should approach endurance training. It is refreshing to see this viewpoint as so many other training guides try to push shortcuts or supposedly “more efficient” ways to aerobic base development. Clearly there are no shortcuts and the physiologic processes that need to take place for maximization are on the “years-long” timescale. Absorbing this fact and incorporating this reality into one’s planning and goal setting will lead to a successful result rather than rushing the process into abject failure.

I applaud the authors for bringing uphill bounding to the fore in intensity sessions. This is a woefully overlooked tool for not only intensity workouts but in the development of specific strength and muscular endurance. Arthur Lydiard used hill bounding extensively in his training programs and cited how important this activity is in providing his athletes with the strength and power needed to perform on race day. Bee and I use uphill bounding with poles extensively in our training for cross country skiing with 2-a-week sessions from early August until the snow flies in late November. We find this work to be essential to high performance in skiing and I find it leads to great advantages in uphill sections in mountain running races. Bee similarly finds these bounding sessions as enabling for difficult kayak moves in powerful class IV and V whitewater.

chapter 6, 7, & 8
“strength training for the uphill athlete”
“General strength assessment and improvement”
“specific strength – training methods”

One of the features that distinguishes this book from the many others on endurance training is the integrative approach the authors take toward strength training. In the proposed training programs strength is not an “add-on” sub-activity or a “suggested” enhancement, it is at the core of the program and therefore strength is conceptually and actionably integrated into the training schedule.

Well placed arguments about how strength elements are critical to injury prevention as well as how properly designed strength elements ensure good technique and allow development of important specific strength capacity are provided and allow the reader to fully appreciate the importance of this area.

But founding a basis for strength is just the start. The authors provide a simple and straightforward plan for assessing your individual strength needs and then outline simple strength programs to address one’s deficiencies. We all have deficiencies (even the best of us) and attention to these will be critical to ensuring progression and, eventual, success with a training plan. For older athletes this section is of primary importance as detailed elsewhere on this site- strength is one of the “big three” limiters for performance as one ages. Sarcopenia does not sleep!

chapter 9, 10, & 11
“programming”
“transition period training”
“introduction to the base period”

These chapters detail out how one can go about developing an individual training plan. Understanding the essentials of training plan programming along with considerations for the very important transition period between seasons will enable the reader to put together an effective training plan and the knowledge of how this plan will inevitably be modified as one executes upon it.

Significant sections are devoted to understanding and properly programming the base period as this is the essential platform upon which any other endurance training is based. This base development then leads to additions of intensity all whilst a parallel strength program is being pursued.

The authors present a meso and microcycle process using the tried-and-true weekly focus approach that distributes work into base (B), intensity (I), recovery (R), specificity (S), taper (T), and goal (G) weeks. Bee and I have been using this system in one form or another since the late 70’s, with the exception of my experiments with “block periodization” in 2016 and 2017. We have had good success with this training plan protocol and con confidently recommend it. Now we have a book that we can recommend as well.

Chapters 12 & 13
“special considerations for SkiMo and ski mountaineering”
“special considerations for mountain running”

These two chapters elaborate upon some of the specific and unique aspects of the two sports and how to adjust your training to meet those unique needs. These sections are well written and provide valuable information for those just getting into these sports but the material is also valuable for even experienced competitors.

bottom line

A well written book that is worth your time and will pay back big dividends in successful endurance training so long as you make the commitment and ensure consistency.

 

*Some relevant quotes from the Burke article:

Short-term fat adaptation strategies, or even long-term adaptation to ketogenic LCHF diets (80% fat, <50 g of CHO/day), which can increase normal rates of fat oxidation by two or three times (21, 22), are limited in application to a small range of sporting events in which utilization is low enough for muscle energy to be provided by fat oxidation (21, 23). To date, it appears that protocols that substantially increase fat oxidation also decrease metabolic flexibility by reducing CHO substrate pools and/or the ability to rapidly oxidize them. The bottom line is that when elite athletes train for and compete in most sporting events, CHO fuels are the predominant and critical substrate for the working muscles, and the availability of CHO (22, 24), rather than fat, wins gold medals. We propose that the increased rates of fat oxidation observed after endurance training and “train-low” strategies (see When less is more) are a proxy for an increase in mitochondrial density; for competition success, this machinery is best utilized by harnessing it to enhance the oxidation of CHO-based fuels.

21. J. S. Volek et al., Metabolism 65, 100–110 (2016).

22. L. M. Burke et al., J. Physiol. (London) 595, 2785–2807 (2017).

23. S. D. Phinney, B. R. Bistrian, W. J. Evans, E. Gervino, G. L. Blackburn, Metabolism 32, 769–776 (1983).

24. J. A. Hawley, J. J. Leckey, Sports Med. 45, S5–S12 (2015).

Within their repertoire of training nutrition strategies, athletes can now include practices that augment adaptive processes in skeletal muscle; these include commencing training with low exogenous CHO availability (fasting overnight and/or withholding CHO during a session) or the more potent trainload strategy of deliberately commencing selected training sessions with lowered muscle glycogen stores (e.g., using a first session to deplete glycogen and then training for a second time after withholding CHO to prevent glycogen restoration) (29, 30). Although studies consistently report augmented cellular responses as a result of trainload strategies, the translation to performance enhancement has been less clear (29, 30). Early investigations failed to detect superior performance outcomes; this was attributed to the overemphasis of such sessions within the training program and their resultant impairment of training intensity (44). These sessions need to be appropriately placed into a periodized program to complement high quality training (7). A recent, clever sequencing of practices (Fig. 1) integrates a performance-promoting session and an adaptation-focused session while adding the benefits of a prolonged increase in exercise-stimulated cellular signaling and posttranscriptional regulation during glycogen-depleted recovery and exercise (45). In subelite populations at least, better integration of train-low and train-high sessions into the training sequence (Fig. 1) has been associated with superior performance compared with the same training undertaken with normal CHO availability (46). So far, however, this does not seem to be the case in studies involving elite populations (22, 47), although it is often incorporated into real-world training sessions (48). Although further studies are needed, part of the challenge in advancing this area of research is the lack of agreement with regard to the terminology and implementation of the practices involved; we have tried to address this in a separate commentary (7).

29. S. G. Impey et al., Sports Med. 48, 1031–1048 (2018).

30. J. D. Bartlett, J. A. Hawley, J. P. Morton, Eur. J. Sport Sci. 15, 3–12 (2015).

44. W. K. Yeo et al., J. Appl. Physiol. 105, 1462–1470 (2008).

7. L. M. Burke et al., Int. J. Sport Nutr. Exerc. Metab. 28, 451–463 (2018).

45. S. C. Lane et al., J. Appl. Physiol. 119, 643–655 (2015).

46. L. A. Marquet et al., Med. Sci. Sports Exerc. 48, 663–672 (2016).

47. K. D. Gejl et al., Med. Sci. Sports Exerc. 49, 2486–2497 (2017).

48. T. Stellingwerf, Int. J. Sport Nutr. Exerc. Metab. 22, 392–400 (2012).

Also, a good read on the lamentable situation in science today:

The Inevitable Evolution of Bad Science:

https://www.theatlantic.com/science/archive/2016/09/the-inevitable-evolution-of-bad-science/500609/?single_page=true

 

 

The Road to Beitostolen – Course Profile Analysis and Training Update

As discussed in a previous post, the courses for the Beitostolen 2019 Masters World Championships (Masters World Cup (MWC)) are very well documented and described due to the homologation certificates provided by the Organizing Committee in Beitostolen. The existence of the homologation certificates is primarily due to the fact that FIS World Cup races are held at the Beitostolen complex and this requires detailed homologation certification by the FIS. As a result, the organizers have substantial profile data for the trails/tracks within the complex. However, the Beitostolen organizing committee have also gone a further step and obtained full FIS certification for each of the three loops that will be utilized for the 2019 MWC- courses that are not used for World Cup events. This has provided reliable, detailed data on the courses for the competitions- a very good thing!

What is missing however is actual continuous profiles of each of the courses that are made up of various combinations of the three certified loops. With this in mind, I have “knitted” together the loop data for each of the primary loop distances- the 10 km course and the 15 km course. This allows one to better observe the “flow” of the courses and to develop individual strategies for racing. I have also compared the Beitostolen courses with the courses in Klosters (MWC 2017) and Minneapolis (MWC 2018).

Presented below are the 10 km and 15 km courses for the Beitostolen MWC plotted utilizing normalized elevation in feet. As these data are taken visually from the provided profile images, the race course profiles represent a best-effort transcription to digital data which may have some minor errors. However, the course flow and magnitude of climbs are all accurately represented.

There is one climb in particular that should be noted- the climb at about the 6.8 km distance mark in the 15km course (on the Urban Round or “B” Loop in the C-B-A loop sequence). This climb is only in the 15 km, 30 km, and 45 km races.

The profile provided by the organizers shows that this hill climbs from about 783 m to about 820 m (37 m/121 feet) over the 2050 m to about 2300 m “B” Loop distance marks (a total of 250m distance- about half of the total climb distance). This yields an average grade of about 15% for this 250 m portion of the climb and, based on analysis of the other loop profiles, represents the most challenging hill for the competitions. The hill continues another 200 m but significantly decreases grade for the reminder of the climb (to about the 2500 m “B” Loop distance mark) with the exception of a “bump” at the very end. The provided homologation certificate shows the average grade for the entire climb to be 9.1% with a section as high as 21.5% (not sure where this steep section is but it may be at the very top of the climb). Although not a particularly long climb, the 15% average grade for the first 250m and then a continued, albeit gradual (about 3.5% average), climb for another 200m seems that it will be challenging, particularly for classic skiers. Combining this with the 21% grade of unknown length and location (this will probably be a herringbone or Klaebo “Klomp” for classic skiers) adds additional challenge. For freestyle skiers it will not be as challenging a climb and might represent a good hill to put on a surge to break up a pack.

Course comparisons with past Masters world cups (2017 and 2018)

The 15 km and 10 km Beitostolen course profiles are presented below along with the profiles for the Klosters 2017 MWC. It is clear that for the 15 km courses the total climb is very similar between the the venues but the “flow” of the courses are not. The Klosters 10 km course is much more difficult than the Beitostolen 10 km course, with 125 m (410 feet) more climb and the different ‘flow” characteristic. The Klosters courses “notch” up to higher and higher elevation with no extended downhills until the very end- this makes these courses more difficult due to the lack of recovery between climbs. The Beitostolen courses should allow for fairly high speeds, conditions permitting.

Comparison of the Beitostolen 15 km and 10 km courses with the Minneapolis 2018 MWC courses shows exactly how “less difficult” the Minneapolis courses were. Firstly, primarily due to snow conditions, the Minneapolis courses were all shortened significantly. Uniquely, the 30 km and 45 km classic races were shortened due to a train blocking the course after the first lap. As a result the “15 km” course was 13 km, the “10 km” course was 6.5 km and the “30 km” course was 22 km (but would have been 28 km even if the train did not block the course). Secondly, there are no extended climbs in the Minneapolis courses and, although not shown here, the 30 km and 45 km courses had an entirely flat 5 km section in each 15 km lap. Thirdly, the total climb for each of the Minneapolis courses is significantly lower than for either the Beitostolen or Klosters courses- 30% to 50% less!

Note: the Minneapolis course profiles have been derived from GPS data taken during the competitions.

As far as preparations for the Beitostolen courses, it seems that a concentration on extended climbs at or about 10% average grade will do one well, particularly for classic skiers. Given the numerous steep sections, classic skiers should be practicing their herringbone skills as these steep sections appear to come frequently throughout both the 15 km and 10 km courses. Although the courses may ski differently to what the profile might suggest, having a good LT block of training prior to any peaking protocol will be of significant utility. An efficient herringbone will also be a welcome skill at heart rates above LT.

competition

Although registration is not yet closed after an extension from 31 January to 15 February, the M07 is again the largest group and many of the perennial medalists from the recent past as well as some competitive skiers moving up from the M06 category have registered. It looks like the classic fields will have the deepest competition but there are some excellent freestyle M07 skiers as well. Unfortunately a number of the past M07 freestyle medalists are not currently registered- hopefully they will in the next week.

Team Bumble Bee decided to go with a mix of techniques for Beitostolen- selecting the 15 km free and the 10 km and 30 km classic races. We are both committed to being well-rounded skiers and not focusing on just one technique. It makes life interesting and we get to mix it up with a different set of skiers for the free technique race.

training

Team Bumble Bee is in a final volume block of training prior to our peaking protocol. The first week of the block has 18-20 h of training but also significant intensity to ensure that the training load is sufficient for a maximal super compensation effect. After a few days of recovery, this block ends with a 30 km freestyle race with 600 m (1968 feet) of climbing at altitude (2000 m/6500 feet). This race course is very similar to the 30 km Beitostolen course (two 15 km courses), with similar steeps and downhills- should be a good simulation opportunity.

Bumble all alone and catching back after sipping a feed in the local 34 km downhill freestyle race.

We both had reasonable results in the local 34 km downhill freestyle race this past weekend, although the profile of the race does not suit our strengths of climbing and surges as there were essentially no climbs. The course is perfect for a large, powerful skier- physical traits that would not be used to describe Team Bumble Bee! But with enough effort the “bees” can be competitive.

Best of training to all of those (if any) who are reading this!

It’s All About the Vertical is back

Team Bumble Bee is still steadfastly working away at writing “Brave Enough – a Training Handbook for Masters Cross Country Skiers” and I initially thought that much of the training theory, planning, and execution presented on this blog would be used in the handbook. As we continue writing, we are finding that virtually everything is being re-written in one way or another. So I have restored all of the past content on this site and will continue to add to it as I have time, interest, or should an interesting subject come about. The re-writing has slowed the progress on the handbook but it is likely that perseverance will ultimately win out.

I know many have asked for access to past content here at It’s All About the Vertical- it is now provided and hopefully, going forward, some new content as well. Enjoy!